Federated Learning
Basic concept for Federal Learning.
Introduction
根據數據分佈方式和參與方之間的協作方式分為不同的類型:
- Vertical FL
- Horizental FL
- Transfer FL
- Hybrid FL?
Knowhow
- FL 可以確保 Dataset 的隱私,因為期訓練不需要傳輸 Dataset ,僅需要傳輸 weight
- FL 可以獲取每個 Local 的權重來合併使得模型更加 Generialization
- 獨立同分布 (Independent and identically distributed , IID)
當數據不是獨立同分布(非 i.i.d.)時,可能會對統計分析、機器學習模型的性能和推論結果產生影響。
- 模型的假設被違反
- 時間序列數據中的依賴性
- 分類與回歸中的數據偏差
- 過度擬合的風險
- 推論和估計的不可靠性 數據非獨立同分布會違反很多統計學和機器學習模型的基本假設,從而導致模型的性能下降或推論結果不可靠。
Learning Type

Learning Types
Training Time
There are three main processes in FL.
- Training
- Communication
- Averaging
$$ \begin{aligned} total_{time} = \text{epochs} \times ( time_{training} + time_{comm} + time_{avg} ) \end{aligned} $$
Life cycle of FL
(1) Training in a distributed fashion, where raw data is kept on-devices, and each selected client locally trains a model and sends its parameter to the server
(2) Aggregation of the received models performed on the server
(3) Distribution of the new model to the clients.
Learning Processing
- Training in client
- Send training weight to server
- Training in server
- Average in server
- Send avg weight and batch size to client
Q/A
- Local server training times?
- Usecase for lane detection?
- solve long tailed problem?
Application
- Lane Detection
- One car move to another place (learning a new knowledge?)